Pozitron

Ebben a cikkben a Pozitron témáját vizsgáljuk meg különböző nézőpontokból és megközelítésekből. Tekintettel mai relevanciájára, kulcsfontosságú megérteni, hogy a Pozitron milyen következményekkel jár és milyen következményekkel jár a társadalmunkra. Ebben a cikkben alaposan megvizsgáljuk a Pozitron különböző oldalait, eredetétől és történetétől a mai világra gyakorolt ​​hatásáig. Szakértői interjúk, adatelemzések és konkrét példák segítségével teljes és részletes képet adunk az olvasónak a Pozitron-ről, azzal a céllal, hogy mélyebb és kritikusabb megértést generáljunk ennek a fontos témának.
Pozitron
Anderson ködkamrafelvétele a pozitron nyomáról. 6 mm-es ólomlemez választja el a kamrát, amelyen áthaladva az energiát veszít, lehetővé téve a mozgásirány meghatározását.
Anderson ködkamrafelvétele a pozitron nyomáról. 6 mm-es ólomlemez választja el a kamrát, amelyen áthaladva az energiát veszít, lehetővé téve a mozgásirány meghatározását.
Osztályozáslepton

A pozitron az elektron antirészecskéje. A legtöbb adata azonos vele, a töltés jellegűek ellentétesek (elektromos töltés, leptontöltés), ezeket lásd az elektronnál.

A kozmikus sugárzásban és atommagbomlásokban (inverz-béta-bomlás) keletkezik.

Nagy energiájú gamma-sugárzás létrehozhat elektron-pozitron párt atommag jelenlétében, ha energiája nagyobb, mint az elektron nyugalmi energiájának duplája: 1,022 MeV (két részecske keletkezik). Ez a párkeltés.

A pozitron anyag jelenlétében hamarosan találkozik egy elektronnal, ilyenkor megsemmisül és nagy energiájú fotonokat kelt. Ez az annihiláció. Ezen alapszik a pozitronemissziós tomográf (PET).

A felfedezés története

Paul Dirac jósolta meg 1928-ban elméleti megfontolásokból (lásd antirészecske).

Carl David Anderson fedezte fel 1932-ben a kozmikus sugárzásban, melyet mágneses térben lévő ködkamrával vizsgált. A ködkamrafelvételeken nem tudható, hogy pozitron, vagy ellentétes irányban haladó elektron hagyta a nyomot. Anderson úgy tudta meg a mozgásirányt, hogy a ködkamrába akadályt tett, amin a pozitron áthaladva energiát veszített. A kijövő részecske pályája jobban görbül, mint az eredetié, így a haladási irány meghatározható. A mágneses tér és a görbület irányából a haladási irány ismeretében már meghatározható a töltés előjele.

Források

Kapcsolódó cikkek

További információk